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ABSTRACT

The discovery of multiple stellar populations in Milky Way globular clusters (GCs) has stimulated

various follow-up studies on helium-enhanced stellar populations. Here we present the evolutionary

population synthesis models for the spectro-photometric evolution of simple stellar populations (SSPs)

with varying initial helium abundance (Yini). We show that Yini brings about dramatic changes
in spectro-photometric properties of SSPs. Like the normal-helium SSPs, the integrated spectro-

photometric evolution of helium-enhanced SSPs is also dependent on metallicity and age for a given

Yini. We discuss the implications and prospects for the helium-enhanced populations in relation to

the second-generation populations found in the Milky Way GCs. All of the models are available at
http://web.yonsei.ac.kr/cosmic/data/YEPS.htm.

Keywords: globular clusters: general — stars: abundances — stars: evolution — stars: horizontal-

branch

1. INTRODUCTION

The study of helium-enhanced stellar populations in the Milky Way globular clusters (GCs) was initiated by the

discovery of multiple red giant branches (RGBs) and multiple main-sequences (MSs) in ω Cen (e.g., Lee et al. 1999;

Piotto et al. 2002; Bedin et al. 2004). Using helium-enhanced stellar populations, Norris (2004) reproduced the mul-

tiple MSs in ω Cen, and Lee et al. (2005a) reproduced the multiple MSs and extremely blue horizontal-branch (HB)

stars simultaneously in ω Cen and NGC 2808. These results stimulated the study of multiple stellar populations in the
Milky Way GCs and led the explosive increase of subsequent studies (e.g., Piotto et al. 2005, 2007; D’Antona & Caloi

2008; Yoon et al. 2008; Anderson et al. 2009; Han et al. 2009; Joo & Lee 2013; Milone et al. 2013; Piotto et al. 2013;

Karakas et al. 2014; Lim et al. 2015; Tailo et al. 2016). The application of the helium-enhanced stellar populations

to the integrated properties (Chung et al. 2011, 2013b) makes it possible to understand the FUV-strong GCs in M87
(Sohn et al. 2006; Kaviraj et al. 2007; Peacock et al. 2017) and the UV flux upturn phenomenon of massive early-type

galaxies (e.g., Burstein et al. 1988; Park & Lee 1997; Yi et al. 1998, 1999; O’Connell 1999; Yi et al. 2011). In this

paper, we present the integrated colors and absorption-line indices predicted from the YEPS model (Chung et al.

2013a), taking into account helium-enhanced subpopulations with various initial helium abundances.

The paper is organized as follows. Section 2 describes how our models are constructed. In Section 3, we present our
model results of helium-enhanced SSP models for broadband colors and LICK absorption indices. Section 4 discusses

the implications of helium-enhanced stellar populations for the integrated properties of various stellar systems.

2. CONSTRUCTION OF MODELS

The models for helium-enhanced stellar populations are constructed based on the Y 2 stellar libraries with enhanced
initial helium abundances (Lee et al. 2015). All of the other model ingredients for helium-enhanced stellar populations

are the same as those for the normal-helium models described in Chung et al. (2013a,b). As discussed in the literature

(e.g., Girardi et al. 2007; Sbordone et al. 2011; Dalessandro et al. 2013), we assume that the enhanced helium does not

affect the stellar spectra used in our models. We note that our models are calculated at fixed Z. In this case, if Yini

increases, the [Fe/H] of our models changes accordingly, keeping Z fixed. Equations 1-3 show how we derive [Fe/H] at
given Yini and Z:

Y = ∆Y/∆Z × Z + Yini, (1)

X = 1.0− Y − Z, (2)

http://arxiv.org/abs/1704.07382v2
http://web.yonsei.ac.kr/cosmic/data/YEPS.htm
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[Fe/H] = log10

(

Z
X
Z⊙

X⊙

)

− 0.217, (3)

where Z⊙/X⊙ is 0.025. The value −0.217 is the [Fe/H] decrement when [α/Fe] = 0.3, under the α-elements mixture

of Kim et al. (2002). The initial helium abundances of the Y 2 stellar libraries consist of five values of Yini = 0.23, 0.28,

0.33, 0.38, and 0.43. We set the initial helium of the normal-helium stellar populations as Yini = 0.23 and assume the

same Galactic helium enrichment parameter, ∆Y/∆Z, to be 2.0. Hence, the helium abundance of a Z = 0.02 star

with an initial helium of Yini = 0.43 would be Y = 2.0× 0.02+ 0.43 = 0.47. Table 1 summarizes the input parameters
adopted in this paper, and Table 2 provides the [Fe/H] to Z conversion for ∆Y/∆Z = 2.0 based on Equations 1-3.

Figure 1 displays the effect of helium abundance on the evolution of stars from the MS to the HB. Since, for a given

mass the core temperature of helium-enhanced stars is hotter than that of normal-helium stars, helium-enhanced stars

evolve faster than normal-helium stars. Figure 2 shows the detailed version of the Z = 0.001 case in Figure 1. The
helium-enhanced stars of a given mass are hotter and brighter on the MS than the stars with lower initial helium.

However, since helium-enhanced stars evolve much faster than normal-helium stars, helium-enhanced stars are fainter

at the same evolutionary stages such as the turn-off and the tip of RGB. Yet, their temperature is still hotter than

that of the normal-helium stars. Consequently, helium-enhanced stars have a smaller mass at a given age and thus

helium-enhanced stars in the MS-to-RGB stage are slightly fainter than normal-helium stars (left panels of Figure 1).
The evolution of helium-enhanced stars in the HB stage is a bit different from those in the MS and RGB stages.

As shown in the right panels of Figure 1, the zero-age HB locus of helium-enhanced stars are brighter than those of

normal-helium stars. However, the luminosity of the zero-age HB loci of helium-enhanced stars becomes extremely faint

when the temperature of the stars reaches approximately 19,000 K (logTeff ∼ 4.3). This is because helium-enhanced
stars with such temperatures have extremely thin hydrogen-burning shells with negligible energy output. Moreover,

helium-rich stars have a smaller core mass, which is the major source of total energy output of these hot HB stars.

As a result, extremely hot HB stars from helium-enhanced populations are fainter than those from normal-helium

populations (Lee et al. 2005a).

The fast evolution of helium-enhanced stars exerts strong effects on the HB stage because the HB type (i.e., the
mean color of HB stars) at a given age is controlled by the mean envelope mass of HB stars. Figure 3 shows synthetic

color–magnitude diagrams with different initial helium abundances and metallicities. The adopted mass-loss efficiency

parameter η (Reimers 1977) is 0.5 and the assumed age of stellar populations is 12 Gyr. The difference in color

between normal and helium-enhanced populations on the MS and RGB stages gradually increases as the initial helium
abundance increases. As the initial helium abundance increases, the mean HB temperature increases for a given

metallicity. As a result, helium-enhanced stellar populations (i.e., Yini = 0.28, 0.33, 0.38, and 0.43) yield blue or

extremely blue HB stars compared to those associated with the normal-helium stellar populations (Yini = 0.23). Note

that helium-enhanced populations show strong dependencies on the metallicity, as was shown by Chung et al. (2013a)

in normal-helium stellar populations.
Figure 4 presents the mass-loss efficiency parameter (η) calibration (Reimers 1977; Lee, Demarque, & Zinn 1994) of

the HB morphology to the inner-halo GCs of the Milky Way and the resulting HB types at a given age and metallicity

with respect to various initial helium abundances. Our previous paper (Chung et al. 2013a) in this series adopted

12 Gyr as the age of GCs in the inner halo of the Milky Way, and required η to be 0.63. We did this calibration using
normal-helium (Yini = 0.23) stellar populations and apply the same η to all other models of different initial helium

abundances. After the release of our previous models based on Y 2-isochrones of Kim et al. (2002), we have improved

our mass-loss table following the updated version of Y 2-isochrones, and under this condition, η turns out to be 0.59

for 12 Gyr. The left panel of Figure 4 compares our previous η calibration to the new one, and the two different

calibrations reproduce the same HB type for the same age and metallicity. If we assume the age of the inner halo as
13 Gyr (Dotter et al. 2010), the new η becomes 0.531. Throughout this paper we adopt η = 0.5 as a standard and

also provide models for η = 0.4 and 0.6 to show the effect of the mass-loss efficiency. In general, the effect of helium

enhancement is similar to that of an age increase because the mean stellar mass also becomes smaller with older ages.

The initial helium abundance determines specific values of metallicity for which the transition from the blue HB type
to the red HB type takes place for given ages. For a comparison to CMDs, we place arrows of the same colors as those

in Figure 3 in the rightmost panel of Figure 4. As initial helium abundance increases, our models show the parallel

1 The η-calibration of our model is dependent on age and Yini. As age and Yini increase at a given metallicity, the η value that matches
the HB morphology of the inner-halo GCs decreases due to the smaller mean mass of HB stars. Therefore, if we adopt the slightly greater
primodial helium abundance, the value of η becomes smaller than that of Yini = 0.23. In addition, if we include helium spread in inner-halo
Milky Way GCs, the increase of the average helium abundance will reduce the η value.
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displacement toward the metal-rich regime in the HB type versus the metallicity plane.

It should be noted that extremely helium-enhanced stellar populations (e.g., Yini ≥ 0.38), when old (t ≥ 12 Gyr)

and metal-poor ([Fe/H] ≤ −2.0), often have HB masses that are smaller than the core masses (≤ 0.45M⊙) given by

the HB tracks. Table 3 provides the valid range of ages of helium-enhanced models that are free from such cases.

3. RESULTS

In Figures 5-8, we present integrated SEDs of the model for helium-enhanced stellar populations under different
assumptions of initial helium abundance. The dotted lines are SEDs for normal-helium stellar populations (Yini = 0.23),

and the colors denote the fluxes from the same evolutionary stages. It is evident from the figures that the SEDs with

helium-enhanced stellar populations generally show stronger UV fluxes as age increases and metallicity decreases. This

trend is the same as that for SEDs of normal-helium stellar populations, but the absolute UV fluxes of helium-enhanced

stellar populations are far greater than those of normal-helium populations. As explained in the previous section, these
strong UV fluxes come from extreme HB stars associated with helium-enhanced stellar populations. The FUV flux of

a helium-enhanced stellar population (Yini = 0.43) with 9 Gyr and [Fe/H] = 0.5 is approximately two times stronger

than that of normal-helium stellar populations (Yini = 0.23) with 12 Gyr and [Fe/H] = −2.5 (see Figure 8). For a

normal-helium case, strong FUV flux is created only by hot, blue HB stars from low metallicity and old age stellar
populations. Thus, without extreme HB stars associated with helium-enhanced populations, there seems to be no way

to generate such strong FUV flux with the metallicity as high as [Fe/H] = 0.5 and the young age of 9 Gyr. On the

other hand, the integrated SEDs of the MS-to-RGB stage (red lines) are not significantly different from each other.

This is because, compared to the mean temperature increase in the HB stage, the temperature difference is quite small

between normal-helium and helium-enhanced stars in the MS-to-RGB stage.
Figures 9 and 10 present the photometric evolution models of helium-enhanced stellar populations. Although the

extent of the variation in integrated colors is different from that of the initial helium abundances used in the model, the

colors of helium-enhanced stellar populations become bluer as the helium abundance increases at a given metallicity

(Chung et al. 2013b). As expected from the SEDs in Figures 5-8, the most sensitive color to the helium-enhanced
population is (FUV − V )0. The HB types of these stellar populations directly affect the integrated (FUV − V )0
models (see Figure 4). At the age of 8 Gyr, the model of Yini = 0.43 already shows extremely blue (FUV − V )0 color

regardless of the metallicities. With the combination of initial helium abundance and age, our models are able to

give an explanation for the observed (FUV − V )0 color range of GCs in M87 as blue as 3 to 8 in the AB magnitude

(Sohn et al. 2006). We refer the reader to Figure 2 of Chung et al. (2011) for a detailed comparison of our model with
the M87 GC observation.

Interestingly, the models with helium-enhanced stellar populations (Yini = 0.28 and 0.33) show slightly redder optical

colors in the metal-poor regime at 12 Gyr, although the HB types of these populations are “blue” for most extreme

HB stars. This is because the luminosities of the extreme HB stars are so faint (∆MV = 〈MEHB〉 − 〈MHB〉 ≥ 4)
that their effect on luminosity-weighted colors is even smaller than that of the usual blue HB stars in normal-helium

stellar populations. The flux contribution of hot HB stars to the infrared regime of integrated SEDs is so small

that the NIR-related colors result in negligible deviation from normal-helium populations. For instance, the effect of

helium-enhanced populations becomes negligible in the color of (V −K)0 when the ages are old (t > 10 Gyr). This

means that, using (V −K)0, which is insensitive to the presence of helium-enhanced stellar populations, the zero-point
calibration of stellar population synthesis models for SSPs with respect to observations can be done regardless of the

initial helium abundances of stellar populations. Note that the red clump stars from the metal-rich ([Fe/H] ≥ 0.0) and

mildly helium-enhanced (Yini ≤ 0.33) populations are slightly brighter than the normal-helium red clumps (Lee et al.

2015), but are insignificant in the integrated color of (V − K)0 and other colors. The slightly brighter luminosity
(∆MK ∼ 0.5) of helium-enhanced red clumps is insufficient to result in color differences in all wavelength regimes.

Figures 11-12 present the LICK/IDS absorption indices from the helium-enhanced stellar population models. The

effects of the helium-enhanced populations on the integrated absorption indices look similar to those on the integrated

colors. The most temperature sensitive Balmer indices (Hβ, Hγ, and HδF ) and the indices located in the shorter

wavelengths are strongly affected by hot HB stars from the helium-enhanced populations. Particularly, Balmer indices
are directly tracing the HB morphologies of the helium-enhanced populations (Chung et al. 2013a). The absorption

strengths of Balmer indices get weaker as the age increases and the metallicity decreases. This is because the strengths

of Hβ and HδF of a star reach peaks at Teff ∼ 9500 K. Thus, the effect of bluer (Teff > 9500 K) or extremely blue HB

stars (Teff > 20, 000 K) on Hβ, Hγ, and Hδ is relatively smaller than ordinary blue HB stars whose mean temperature
is around 9000 K (see Figure 1). As a result, hot and fainter HB stars lead to decreasing Balmer lines (e.g., Lee et al.

2000; Schiavon et al. 2004; Percival & Salaris 2011).
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The Fe5015, Mg2, Mgb, 〈Fe〉, and NaD absorption strengths of the helium-enhanced populations display relatively

small deviation from those of the normal-helium populations compared to the Balmer indices. These indices are

merely sensitive to the amount of the elements (i.e., Fe, Mg, and Na) rather than the temperature. As described in

Chung et al. (2013a), warm HB stars (Teff ∼ 9000 K) from the helium-enhanced stellar populations tend to depress
the strength of the metal indices above.

4. DISCUSSION

As part of the Yonsei Evolutionary Population Synthesis (YEPS) series, we have presented the models with helium-
enhanced stellar populations. The construction of the helium-enhanced models was motivated by the discovery of the

multiple stellar populations in Milky Way GCs. The helium-enhanced populations generally show bluer colors and

stronger indices than the normal-helium populations in the temperature sensitive colors and absorption indices.

Recent studies (Lee & Worthey 2005; Piotto et al. 2005, 2007; Yoon et al. 2008; Han et al. 2009; Bellini et al. 2010)

show that the helium-enhanced populations take up ∼30% of the whole population in Milky Way GCs. For a more
quantitative comparison with observations, the helium-enhanced populations should be incorporated properly into

stellar population synthesis models. The choice of initial helium abundance for the helium-enhanced stellar populations

is crucial because, as shown in Figures 9-12, the initial helium abundance of the helium-enhanced populations controls

when the extreme HB stars come out. Thus, the choice of the fraction of the helium-enhanced populations and the
initial helium abundance alter the integrated colors and absorption indices of stellar populations. This implies that,

without taking into account the effect of the helium-enhanced populations, the age and metallicity measurements

of remote stellar systems would substantially be either overestimated or underestimated (see, for instance, Lee et al.

2005b; Ree et al. 2007; Chung et al. 2011, 2013b).

It is still unclear how the helium-enhanced subpopulations formed on the Milky Way GCs2 and whether or not
these populations can affect the helium enrichment in the Galactic scale. The most plausible and effective way to link

these two stellar systems together is to have star clusters with helium-enhanced stellar populations act as building

blocks of their parent galaxies. As well studied by Lee et al. (2007), the Milky Way GCs containing helium-enhanced

stellar populations are generally luminous and also show peculiar kinematics compared to that of the other GCs.
This may suggest that the GCs with the helium-enhanced stellar populations have a different origin and are possible

candidates for the disrupted cores of the Milky Way building blocks. The discoveries of a large amount of sdB stars

(Rhee et al. 2006) and CN-enhanced stars (Martell & Grebel 2010; Martell et al. 2011, 2016; Fernández-Trincado et al.

2016; Schiavon et al. 2017) in the Milky Way halo and bulge have also strengthened the view that these stars are

scattered building block remnants, because the only environment where CN-enhanced stars and sdB stars can form is
inside massive GCs3. In addition, the dynamical evolution model of GCs presented in Chung et al. (2016) supports the

notion that GCs in the Milky Way are building blocks of the Milky Way halo. A recent study by Lee et al. (2015) on

the double red clump found in the Milky Way bulge proposed the close connection between the Milky Way bulge and

the GCs with multiple stellar populations. If so, both early-type galaxies and bulges of disk galaxies should be affected
by the presence of helium-enhanced populations, showing strong UV fluxes and enhanced Balmer indices. Interestingly,

the well-known UV-upturn phenomenon (e.g., Burstein et al. 1988; Park & Lee 1997; Yi et al. 1998, 1999; O’Connell

1999) and enhanced Balmer indices of early-type galaxies (Schiavon et al. 2006) are in line with the prediction of

helium-enhanced stellar populations as building blocks of early-type galaxies (Chung et al. 2011).

Besides the helium enhancement, it is well established that the second-generation populations in the Milky Way GCs
show peculiar patterns of chemical elements such as the Na–O anticorrelation and the N enhancement (Carretta et al.

2009a,b; Gratton et al. 2012; Lim et al. 2015, and references therein). If we assume that the second-generation stars in

massive GCs (i.e., building blocks) donate a certain amount of stars to the halo of their parent galaxies via disruption,

the existence of Na excess galaxies found among massive early-type galaxies can be understood (Jeong et al. 2013).
The problem is that the effect of helium enhancement is in the opposite direction of the enhancement of the individual

elements as shown in Figures 11-12. However, this can be understood too, given that the helium-enhanced population

takes only a small fraction of the whole population and the effect of the element variation on these indices overwhelms

the effect of the temperature increase. Another intriguing aspect of the helium-enhanced stellar populations is that

these populations can also influence the gravity-sensitive indices such as the Na I doublet (Schiavon et al. 1997) and
the Wing-Ford index (Schiavon et al. 1997) due to their smaller mean mass at a given age. If helium-enhanced

2 The most likely processes of helium enhancement in GCs are the pollution from the intermediate-mass asymptotic giant branch
stars (Ventura & D’Antona 2008) and/or fast-rotating massive stars (Decressin et al. 2007), and are due to the enrichment by supernovae
(Piotto et al. 2005; Lee et al. 2009).

3 Schiavon et al. (2017) discuss that N-rich stars may have been formed in similar environments of Galactic GCs but gravitationally are
not bound to GCs. However, more work is needed to reveal the origin of these stars.
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populations are abundant in a galaxy or a star cluster, their smaller mass may also lead to a stronger equivalent width

of the Na I doublet and Wing-Ford indices. This is an important issue because the strong gravity-sensitive indices are

usually interpreted as bottom-heavy stellar mass functions of early-type galaxies (e.g., van Dokkum & Conroy 2010;

Cappellari et al. 2012; Conroy & van Dokkum 2012). We will deal with the issues for other element variations such as
C, N, O, and Na, as well as the effect of gravity-sensitive indices on the model, in our forthcoming papers.
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Figure 1. Effect of initial helium abundance on the stellar evolution. The left panels are isochrones with ages of 7, 12, and
17 Gyr for metallicities from Z=0.0001 to Z=0.02 (from top to bottom). The solid lines are isochrones for normal-helium
abundance (Yini = 0.23), and the dashed and dotted lines correspond to helium-enhanced isochrones for Yini = 0.33 and 0.43,
respectively. The right panels are the evolutionary tracks for helium burning stars with various mass. The metallicities of
the right panels are the same as those of the left panels. The red, green, and blue lines indicate Yini = 0.23, 0.33, and 0.43,
respectively. The solid lines are loci for zero-age HBs at given initial helium abundances.



8

-2

-1

 0

 1

 2

 3

 3.6 3.7 3.8

 Z = 0.001
 t = 12 Gyr

0.456 M
0.456 M

0.815

0.619

0.848
0.643

Yini= 0.23
Yini= 0.38 L

og
 L

/L
 

 Log Teff 

 3.6 3.7 3.8

0.456
0.456

0.456

0.815

0.706

0.580

0.848
0.6790.559

Yini= 0.23
Yini= 0.33
Yini= 0.43

 Log Teff 
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at the same evolutionary stages.
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12

−2

−1

 0

 1

 0  2000  4000  6000  8000 10000

13 Gyr

lo
g 1

0 
f λ

/f
55

00

λ(Å)

−2

−1

 0

 1

12 Gyr

lo
g 1

0 
f λ

/f
55

00

−2

−1

 0

 1

10 Gyr

lo
g 1

0 
f λ

/f
55

00

−2

−1

 0

 1

 7 Gyr

lo
g 1

0 
f λ

/f
55

00

−2

−1

 0

 1

 1 Gyr

[Fe/H]=−2.5

lo
g 1

0 
f λ

/f
55

00

 0  2000  4000  6000  8000 10000

λ(Å)

[Fe/H]=−1.7

 0  2000  4000  6000  8000 10000

λ(Å)

[Fe/H]=−0.9

Metallicity

 0  2000  4000  6000  8000 10000

λ(Å)

[Fe/H]= 0.0

 0  2000  4000  6000  8000 10000

λ(Å)

A
ge

[Fe/H]= 0.5

Figure 6. Same as Figure 5 but for Yini = 0.33 and ages of 1, 7, 10, 12, and 13 Gyr.
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Figure 7. Same as Figure 5 but for Yini = 0.38 and ages of 1, 7, 10, and 11 Gyr.
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Figure 9. Effect of initial helium on integrated colors of SSPs. The red, pink, green, blue, and cyan lines correspond to SSPs
with helium abundances of Yini = 0.23, 0.28, 0.33, 0.38, and 0.43, respectively. The ages of SSPs are 4, 8, and 12 Gyr from the
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Table 1. INPUT PARAMETERS ADOPTED IN MODELS

Parameters Normal-helium Model Helium-enhanced Model

Slope of Salpeter initial mass function, s = x + 1 2.35 2.35

α-elements enhancement, [α/Fe] 0.3 0.3

HB mass dispersion, σM (M⊙) 0.015 0.015

Reimers’ mass-loss parameter, η 0.4, 0.5, and 0.6 0.4, 0.5, and 0.6

η calibrated for inner-halo GCs of the Milky Way 0.59 (12 Gyr assumption) ...

Initial Helium abundance, Yini 0.23 0.28, 0.33, 0.38, and 0.43

Age, t (Gyr) 1 to 15 1 to 15

Metallicity coverage in [Fe/H] −2.5 to 0.5 −2.5 to 0.5
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Table 2. THE CONVERSION BETWEEN [Fe/H] AND

Z WITH RESPECT TO THE INITIAL HELIUM FOR

[α/Fe] = 0.3

[Fe/H] Yini

0.23 0.28 0.33 0.38 0.43

Z

-2.5 0.00010 0.00009 0.00009 0.00008 0.00008

-1.7 0.00064 0.00060 0.00056 0.00051 0.00047

-0.9 0.00398 0.00372 0.00347 0.00321 0.00295

-0.3 0.01515 0.01417 0.01319 0.01220 0.01122

0.0 0.02856 0.02670 0.02485 0.02299 0.02114

0.5 0.07279 0.06807 0.06334 0.05861 0.05389



Table 3. THE VALID AGE

RANGE OF THE HELIUM-

ENHANCED MODELS FOR

η = 0.5

Initial Helium (Yini) Age

0.28 1 ∼ 15 Gyr

0.33 1 ∼ 13 Gyr

0.38 1 ∼ 11 Gyr

0.43 1 ∼ 9 Gyr


